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EXECUTIVE SUMMARY

The ability of the defender to detect and identify cyber attacks reflects the “arms race” na-
ture of the cyber domain. While defenders develop new and improved techniques to detect known 
attacks, attackers resort to more sophisticated and stealthy techniques to perform their intrusions 
and evade detection. In this study, we identify the major gaps that exist in today’s attack detection 
systems and infrastructures that impede more efficient and effective attack analysis. Attack anal-
ysis in this study refers to activities related to identification and understanding of attack methods 
and techniques, the capability to detect such attacks in USG, DoD, and general enterprise systems, 
the ability to attribute such attacks to adversaries, and the ability to predict them before they 
happen. Since the latter two capabilities are significantly underdeveloped, most of the focus of 
this study is on the identification and detection of attacks. We have reviewed recent literature to 
identify major gaps in attack analysis. We have then ranked these gaps based on their likelihood of 
impacting current systems, the extent of their impact, and the cost of developing new and improved 
techniques to enhance current attack analysis capabilities. We have ranked higher those gaps that 
have higher likelihood, greater impact, and lower cost. We have then identified promising research 
directions that should be pursued to mitigate these gaps. For most gaps, we have identified a short 
term (1-3 years), a medium term (3-5 years), and a long term (5+ years) research direction. Our 
research recommendations fall into seven high level directions: incorporating population-based at-
tack analysis as opposed to analyzing individual attacks; making detection sensors temporally and 
spatially dynamic; making attack identification and detection more collaborative among systems 
and enterprises (e.g., across DoD and USG); applying more automation to currently manual tech-
niques (e.g. automated signature development); using multiresolution analysis that puts more focus 
on the more prominent attack techniques and sensitive parts of a system; developing more relevant, 
accurate, and representative corpora of attacks; and incorporating existing hardware extensions to 
support better and more accurate detection of attacks. We do not have enough evidence to believe 
that the list of gaps and research directions identified is complete or comprehensive. However, we 
have made our best attempt to identify the major gaps in attack analysis using our knowledge and 
judgment and we strive to help and guide the research directions with this report.
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1. INTRODUCTION

This report provides a gap analysis for the area of attack analysis. For the scope of this paper
attack analysis is defined as techniques and capabilities to discover, identify, and prevent adversary
activities on enterprise networks; these technique address weaknesses in the ability to detect, notify,
and react to cyber attacks.

1.1 GOALS

This report is designed to gather together gaps in the area of attack analysis from open
sources such as top tier networking and security conferences. It is the intention of the authors that
this report be shared with all members of the community in order to foster research lines that will
address the gaps identified within this report.

1.2 SCOPE

The information within this report is entirely derived from open sources. In order to make
the report applicable to the largest audience we have not considered proprietary environments or
information sources. We make the general assumption that the domain requiring protection is
that of a typical large enterprise. We assume such enterprises have adequate resources to fund an
internal cyber defense team.

The remainder of the report is organized as follows. The second section describes our study
methodology, which includes the threat model that we use for this study as well as our method
for finding, selecting and evaluating gaps for inclusion in the report. The third section describes
all gaps that we have selected for inclusion, organized by the primary root cause of the gap. In
the third section we also describe each gap; we describe the gap’s impact; and we discuss lines of
research that may address the gap.
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2. METHODOLOGY

In this section we describe our methodology for gap discovery, selection, treatment and pri-
oritization.

2.1 THREAT MODEL

The threat model for enterprises has two dimensions: who is attacking and why they are
attacking. Table 1 illustrates the capability/desire levels for actors engaging in activities against an
enterprise. This capability/desire is qualified as low, medium or high because there are other factors
that contribute to attacker activities such as a threat actors interest in a particular enterprise, which
would help determine the actual threat to a specific enterprise. As such, this matrix is used to
scope the broad capabilities and interests and additional information would be used to determine
actual threat for a specific enterprise.

TABLE 1

Threat Matrix of Study

Tier 1 Billions of assets

Tier 2 Millions of assets

Tier 3 Thousands of assets

short Long Mission
Threat Actor Description term term based

profits profits effects

C
rim

in
al

E
sp

ion
age

W
arfare

Low
Medium Threat Activity

High

Table 1 illustrates the trend that actors with larger amounts of assets focus primarily on 
cyber-espionage and cyber-warfare. This makes logical sense because well-funded threat actors are 
primarily nation state actors, or large organizations, which means that they will use cyber activities 
as a means to accomplish their internal mission objectives. Low-funding threat actors primarily 
focus on criminal based activities although they may also engage in cyber-espionage and cyber-
warfare if they are suitably motivated into action. For the scope of this report we primarily address 
gaps for which threat actors with low to medium levels of funding would have the capability to 
exploit. This decision provides for the greatest lower common denominator for gaps that need to 
be addressed by enterprises.
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2.2 GAP DISCOVERY PROCESS

To discover gaps in the attack analysis capabilities, we conducted a literature survey of 
over sixty papers from top tier networking and security conferences such as IEEE Security and 
Privacy; USENIX Security; ACM Conference on Computer and Communications Security (CCS); 
the Network and Distributed System (NDSS) Symposium; the Symposium on Research in Attacks, 
Intrusions, and Defenses (RAID); and the Annual Computer Security Applications Conference 
(ACSAC); among others.

We initially surveyed the titles and abstracts for the past four years of each conference’s 
proceedings. We then down-selected the list of papers based on their relevance to attack analysis. 
We read the papers from this refined list and extracted any relevant gaps based upon our own 
experience, the context of the paper, and the research contribution.

2.3 GAP SELECTION PROCESS

The gap selection process was performed during team meetings and began with individual
team members independently determining if a discovered gap was worthy of carrying forward. A
majority vote was then used to determine whether to keep it as a gap or not. Also, during this
stage, duplicate and similar gaps where merged into single gaps.

2.4 GAP TREATMENT AND CLASSIFICATION PROCESS

Gap treatment and classification was initially done independently by each team member. The
process involved going through each gap and devising a root cause for that gap’s existence. The
root causes were clustered into at most four root causes per team member. These root causes were
discussed and combined into nine root causes via discussion, review, and majority agreement. After
the root causes were agreed upon, team members classified each gap by determining its primary
root. By primary root cause, we mean the root cause that contributes the most to the existence
of the gap. We also assigned secondary root causes to gaps that have more than one cause. The
list of root causes can be found in the next section, Gaps and Research Directions; gaps have been
organized according to primary root cause.

2.5 GAP PRIORITIZATION PROCESS

Gaps have been prioritized according to three criteria: likelihood, impact and cost. Likelihood
is the likelihood that the gap is being used by threat actors in today’s systems to bypass defenses
or to avoid detection. Impact is the damage the gap leads to in enterprise systems when exploited
by an attacker. Cost is the cost of fixing the gap. All criteria were given qualitative values of low,
medium and high as there are no reliably objective metrics that are simple enough to calculate
accurately within the constraints of this study. Table 2 lists qualities that we used to decide the
values of each gap’s criteria.
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Each team member individually scored each gap’s criteria. The scores for each gap where
consolidated by majority agreement to produce a master score for each gap’s criteria. Once a
master score was determined, a priority with the equation C ×

√
L× I where

C =


1 if gap cost is high.

2 if gap cost is medium.

3 if gap cost is low.

L, I =


1 if likelihood, impact cost is low.

2 if likelihood, impact cost is medium.

3 if likelihood, impact cost is high.

With this priority ranking, we determined the priority of each gap. Note that our priority
ranking is a subjective computation based on the qualitative ranking of our team members. Other
researchers are likely to compute different priorities based on their scoring of the gaps.

TABLE 2

Qualities of Criteria

Likelihood Impact Cost

High We see this problem It can severely limit our We have to redesign
every day defenses or damage and change many

our systems systems and
infrastructure

Medium We see this problem in It has negative impact It requires research and
some systems on our systems deployment efforts

Low We barely see this It can have negative The systems and
problem impact, but the impact infrastructure remains

is small compared to mainly unchanged; the
other gaps development is

possible
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3. GAPS AND RESEARCH DIRECTIONS

3.1 OVERVIEW OF ROOT CAUSES

Nine root causes have been identified as the major sources of the gaps. Each of these root
causes is hard to fix in its entirety, however, even partially addressing a root cause has the poten-
tial to impact many gaps. While the ultimate goal is to discover solutions for these root causes,
researching how to improve individual gaps may provide more immediately tangible results. Gaps
are described under the root causes from which they primarily stem. Given that many gaps are
attributable to multiple root causes, secondary root causes are discussed within the gaps as appli-
cable. Here we provide a brief description of the nine root causes and expand upon these causes in
the discussion of each gap that follows below.

1. The semantic gap between the attacks and detection mechanisms

a. There is often a limited understanding of the actual meaning of data at a point of detection
or analysis, typically due to a lack of context from the points of attack.

2. Systems are designed for expressiveness and flexibility

a. Many languages, protocols, and system interfaces are designed to be expressive and flex-
ible in order to facilitate usability expandability and general applicability. Attackers can
similarly take advantage of these properties, complicating attack analysis. Furthermore,
benign but vulnerable systems become harder to analyze when they are less constrained.

3. Production and analysis environment asymmetry

a. Operational environments have proven incredibly challenging to replicate. This compli-
cates detecting and analyzing attacks that appear in specific environments as well as testing
and training defenses in realistic environments.

4. Legacy support requirements

a. Solutions for some gaps are known today yet existing infrastructure often cannot be easily
upgraded for economic, political, group coordination, or other reasons and thus gaps remain
unresolved.

5. Sensors are spatially and temporally static, while attacks are dynamic

a. Attacks are comparatively more dynamic than sensors, changing targets, sources, and
payloads. This is done in order to evade detectors that rarely change in terms of content
searched as well as positioning within the network, system, and software stacks.

6. Loose tying between identities and entities over the network

a. The inability to associate an individual or group with an entity has long been pervasive
throughout network communications and substantially limits attribution. Additionally,
the inability to track a suspicious actor over time hinders detections based upon trends.
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7. Enormous volume of unknown activities (mostly benign)

a. Network communications and system activity continually generate large volumes of data
which limits the potential analyses that can be performed and exacerbates the problem of
managing false positives.

8. Underdeveloped reversible and low impact defenses

a. Detection technologies have few options for responsive actions with low impact on the
network or that can be undone with relative ease (e.g., putting spam in junk folder). Lack
of such options limits the utility of detectors with false positives.

9. Systems implicitly or explicitly trust the users

a. Many systems have been built to trust users due to both intended design and errors in
implementations. While this has improved usability overall it has also caused challenges for
attack analysis, specifically in regards to the ease with which attackers can mask activities,
identities, and capabilities.

3.2 THE SEMANTIC GAP BETWEEN THE ATTACKS AND DETECTION
MECHANISMS

Gap: Missing end-to-end view required for understanding attacks involving mul-
tiple parties

Likelihood: H Impact: H Cost: L

Description

The community has provided few options for analyzing attacks that span across multiple
parties, leaving a gap in piecing together the full view of attacks. This gap is particularly salient
in the web server and browser domain where there may be just two parties, the site and the user.
Consider Cross-Site Request Forgery (CSRF) attacks in which a browser visiting a malicious site
could issue a fake request to a victim site on behalf of a user [9,36]. The victim site does not know
that the request came from the malicious site as opposed to the user, it simply sees the request as
coming from the same browser. The browser does indeed possess information that could enable the
server to make this decision and could share this information with the server, perhaps via an HTTP
Referer header, but many browsers avoid this for privacy or other reasons. Lacking an end-to-end
view prevents the detection of attacks for both isolated incidents and higher-order, coordinated
attacks. It also limits forensic investigators analyzing attacks after the fact.

The primary cause of this gap is that the system making the detection or security decision
lacks complete information, information which may actually be known by other parties. A major
reason that we do not have the ability to provide this information is because we lack the appropriate
sensors and mechanisms for extracting data from those sensors at decision points.
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Research Direction

In the short-term focus should be directed towards developing sensors that are sharable across
client-server interactions, where there are solely two parties, each of which possesses part of the
picture. Attention should be given to connecting simple, existing sensors on the client and server
sides to better detect web-based attacks. For example, browser-based taint tracking [88] can be
combined with server-side traffic monitoring [43] to better detect XSS attacks. Additionally, we
need ways to facilitate collaboration amongst cooperative parties. Several collaborative detection
systems have been proposed in the academic community that can serve as starting points [13,97].

In the medium-term seek to integrate sensors into systems that are owned and operated by 
external parties. This might involve placing sensors in uncooperative areas and procuring services 
solely for the purpose of feeding attack-relevant information. Work described in [3] has demonstrated 
such an approach in their investigation into domain parking services. In order to identify a domain 
parking service as malicious it was necessary to host websites with the parking service, run 
advertisements via third-party ad networks, purchase traffic from third-party providers, and 
simulate web crawling activities. Detecting malicious behavior required sensors at all of these layers.

Longer term efforts should develop capabilities that enable dynamic sensing across parties.
While a detection system may not know how to properly make a security decision it will often
recognize when it does not have sufficient information. Lacking the ability to dynamically poll other
sensors for the missing data, current sensors simply stop the analysis here. Research can focus on
selectively and randomly enabling a large set of such sensors [14] (which cannot all be active at
all times due to performance overhead) in order to achieve a more diverse and randomized view of
networks. Advancing this capability may also involve research into privacy-preservation techniques,
supporting the establishment of partnerships amongst relevant parties, and development of an
application introspection interface (ASI) that enables each application to provide a standardized
semantic view of an application similar to how APIs provide a standardized programming interface.

Gap: Network stack manipulation cannot be found by signature matching

Likelihood: H Impact: M Cost: M

Description

Network protocols are very complex and flexible. Many detection techniques use signature-
based schemes to detect network stack manipulation attacks similar to malware detection. However,
this has been a losing battle. For example, attacks that manipulate a higher layer protocol field (e.g.,
FTP) cannot be easily detected at the network layer by inspecting packets. First, analyzing proto-
col manipulations often requires emulating the protocol which is difficult and performance heavy.
Stateless approaches such as signature matching miss the rich semantics of protocol manipulation
attacks [51]. Second, protocols often provide many different ways of achieving a desired behavior
which enables an attacker to evade signature detection by making changes to the implementation
of an attack while maintaining the malicious effect.
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The main root cause of this gap is the semantic gap between the detection logic (signature
matcher) and the attack (protocol manipulations). Another contributor to this problem is the
requirement to support legacy network protocols. Many of these complexities can be avoided if the
entire protocol stack can be designed from a clean slate.

Research Direction

Short-term research should focus on designing a few detection techniques built into the same
network layer as the most prominent types of protocol manipulation attacks. For example, research
should focus on high level protocol analyzers to detect botnets [33].

Medium-term research should focus on limiting the flexibility of existing protocols by disabling
their unused features or forcing them to behave in a canonical way to make them more amenable
to detection [58].

Long-term research should focus on development of new network stack protocols that can be
provably secure and their misuse can be detected using simple and lightweight approaches.

Gap: Network flow level metrics are insufficient to accurately detect botnets

Likelihood: H Impact: M Cost: M

Description

Network operations centers commonly use network flow data in order to detect malicious bots
on their network. Some information about network connections can be understood at the network
flow level. This typically includes the communicating host addresses, transport-layer communi-
cation protocols, sizes and number of packets, and connection times. Unfortunately, analyses at
the network flow level commonly miss even relatively loud botnet communications. The limited
number of attributes that we can check at the network flow level [78] allows attackers to easily
appear benign when measured under these attributes. Attackers simply ensure malicious behavior
is only visible at a finer granularity. For example, packet payloads are not visible at the network
flow level and thus a bot could be receiving unencrypted command data from a botnet master and
a network flow level analysis would have no visibility into these commands.

This is a gap area for nearly all organizations and it most directly impacts network analysts
who are attempting to detect both existing and new malicious behavior at a network-level view.
This also inhibits research into network defenses in general; researchers have had limited success
using the few attributes that can be analyzed at the network flow level.

The root cause is that there’s a semantic gap: we don’t have the context at the network flow
level that’s required for understanding the malicious communication. We don’t have information
about packet payloads or encryption keys that might only be available at the host or application
level but which would provide more insight into the nature of the communication. Another cause
for this gap is the fact that many network detection approaches largely ignore installing or using
sensors that could provide more details and instead rely heavily upon sensors (i.e., network flow
producers) that can capture more manageable volumes of data.
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Research Direction

In the short-term, research can look at more effective ways to use network flow level informa-
tion for detecting botnets, such as the work described in [10] that uses a machine learning approach
to detect botnet command and control servers. However, given the limited amount of information
available at this level, this will likely only provide incremental improvement. In the mid- to long-
term the community should consider moving more towards building networks and systems that are
capable of deeper sensing. This could come in the form of more dynamic sensors that only capture
detailed, large volumes of data when triggered, either by an event or periodically. For example,
observing network flows with suspicious connections to one server might trigger sensors on the
clientside to begin logging full packet capture data.

Gap: Lack of effective techniques for tracking input sources through memory and
storage

Likelihood: M Impact: H Cost: M

Description

A gap exists in the ability to track malicious input as it moves within a program’s memory
space (and potentially to storage or other systems). The typical use case is to detect input that’s
intended to hijack control flow or change sensitive data. This could be input designed to overwrite a
return address, instructions or a command to be executed, or malicious changes to a data structure.
Tracking input in the context of a software application is referred to as taint tracking [62,76]. Closing
this gap would enable detectors to distinguish attacker supplied values from other program data
and thus detect if an attacker supplied value were to change sensitive data such as a return address.

The gap is of interest to researchers building detections, mainly with the goal of protecting
against memory corruption vulnerabilities but also of protecting against higher-level attacks includ-
ing SQL injection, command injection, or general malicious data modification. It is also of interest
to reverse engineers who are attempting to understand an attack and identify the vulnerability that
was exploited by the malicious input. Those wishing to track adversarial movements and persis-
tence on a network are also hindered by this gap as they have trouble distinguishing adversarial
data from benign data.

The semantic gap is the root of this problem. At the point in which a security decision must
be made about a piece of data most or all of the information about the source of this data has been
lost. This is closely tied to the fact that languages and systems are expressive and flexible. With
an enormous number of potential program paths, the challenge lies in retaining source information
throughout execution in a performance efficient manner.

Research Direction

Investigate ways to improve the performance of taint tracking for small software applications.
The overhead of dynamic taint trackers is currently very high, typically over 100% [81]. One of
the faster taint tracking prototypes to date is Minemu [15]. For more practical applications of
input tracking look at the prototype described in [23] which presents a technology that uses taint
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and data flow analysis to detect vulnerabilities in PHP web apps. In the medium-term hardware
solutions should be investigated to determine the feasibility of bringing performance to reasonable
levels. Longer term seek to move beyond taint tracking and following input within a single piece of
software and towards researching how to track input through to storage and other systems. Such
research would support tracking adversarial movements on a network.

Gap: Most protocols are binary and have high variability; N-gram anomaly de-
tection is not an effective technique against binary protocols

Likelihood: L Impact: L Cost: H

Description

N-gram anomaly detection has been proposed to detect attacks in different contexts. However,
N-gram anomaly detection has had limited effectiveness against network protocols. Since most
protocols are binary, N-gram analysis misses a lot of semantic information (e.g. protocol fields such
as addresses, headers, flags, etc.) that’s necessary for creating detection technologies that are hard
to evade and have low false-positive rates [34].

The main root cause of this gap is the semantic gap between the detection algorithm and
the attack. Protocols use fields, addresses, and flags whereas N-gram analysis looks at the binary
representation of such values without that semantic information. Another contributor to this gap
is the legacy support for existing network protocols.

Research Direction

Medium-term research should focus on anomaly detection approaches for a limited number of 
popular protocols, but by focusing on protocol fields as opposed to inspecting binary byte values. 
Another possible direction is disabling unused features of existing protocols to make them more 
analyzable [58].

Long-term research should focus on designing new network protocols that are more amenable
to analysis via anomaly detection.

3.3 SYSTEMS ARE DESIGNED FOR EXPRESSIVENESS AND FLEXIBILITY

Gap: Static analysis techniques are hindered by packing and obfuscation tech-
niques

Likelihood: H Impact: H Cost: L

Description

Malware payloads are often packed or obfuscated in order to evade detection and reverse
engineering. Recent studies have estimated that between 50-92% of malware is packed [1, 17].
This complicates the network defense and triaging process because the analysts have to spend
a considerable amount of time understanding and unpacking the malware’s behavior. This also
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impedes automated ways of analyzing the malware’s impact [17, 45, 67]. One implication of this 
gap is the difficulty it creates in prioritizing malware investigations and defenses. This problem 
also hinders classification, taxonomy generation, malware labeling, and information sharing. In 
fact, it has been shown that the majority of anti-malware/anti-virus vendors disagree on malware 
labeling for most malware samples [67]. The flexibility and expressiveness of the current processor 
architectures (such as x86) and operating systems is the root cause of this problem. The fact that 
there are many ways of performing an operation in modern systems allows malicious behavior to 
be obfuscated which makes static analysis very hard. Backward compatibility (i.e., legacy 
support) forces outdated features to remain available, providing yet more ways for a payload to be 
obfuscated.

Research Direction

Short-term research that can mitigate this gap is to dynamically extract malware behav-
ior from a population of known malware and statically check those specific behaviors against an
unknown sample [45,46,50].

Medium-term research should focus on sharing analysis reports across systems and networks
so that if the malware exposes the hidden behavior on a system, it can be used in other systems
and networks to understand its impact [40,50,57].

Long-term research can focus on designing new architectures or tagging existing ones with
additional mechanisms that allow clean separation of code and data. This will remove flexibility
for the attacker in his ability to achieve certain behaviors [14,88,92].

Gap: Lack of effective techniques for detecting code injection

Likelihood: H Impact: H Cost: M

Description

Despite many years of research into determining if a given sequence of instructions is mali-
cious, it has proven challenging to implement effective detection mechanisms and other defenses
in practice. Memory corruption vulnerabilities continue to be one of the most common ways that
malicious code is executed on victim systems [40,81]. This gap specifically relates to challenges as-
sociated with malicious code injection while a subsequent gap (see Gap: Lack of effective techniques
for detecting code reuse) relates to the challenges associated with protecting against attacks such
as Return-Oriented Programming [47, 68]. By code injection we refer to the insertion of malicious
instructions into an application by an attacker and the hijacking of control flow in order to execute
those instructions. This gap impacts software written in languages that lack memory safety, notably
C and C++. Techniques such as W xor X [59, 82], and to a lesser extent code signing in Apple’s
systems [65], have proven to be effective at preventing injected code from being executed. However,
it is not always possible to implement these techniques in all software, specifically in software using
Just-In-Time compilation [7] and in cases where it can be disabled by code reuse attacks.

The ability to definitively detect the injection or execution of malicious instructions would
eliminate some memory corruption attacks entirely and make most attacks harder to accomplish.
In the case of perfect detection of code injection, attackers can sidestep code injection detection
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by reusing existing code in the application, however the difficulty of attacks would undoubtedly be 
raised; attackers would have to complete attacks entirely by reusing code, which requires more effort 
than simply injecting code. This gap stems from the fact that we develop software in languages 
that lack memory safety. Applications are developed in such languages in order to take advantage 
of the flexibility and speed provided by these languages. In cases where developers would consider 
switching to memory safe programming languages we would still have to consider supporting a 
large, complex, and widely used code base that is written in C and C++ (e.g., most operating 
system kernels and system-level software).

Research Direction

Performance and compatibility have been the two major reasons that more memory corruption
defenses have not been implemented to date. Upcoming hardware implementations of proposed
defenses have the potential to significantly improve the performance of these defenses, which have
traditionally been hindered by slow software implementations. Efforts in the near term should be
directed at supporting upcoming hardware implementations. Specifically, consider how the new
Intel Memory Protection Extensions [31, 39] can be used to achieve memory safety in commodity
applications and explore potential hurdles to successful adoption.

In the medium-term it would be useful to investigate other hardware or performance-efficient
software solutions to address any shortcomings identified in the Intel Memory Protection Exten-
sions. An alternative approach may be a hardware implementation of Instruction Set Randomiza-
tion [8, 47, 68], which provides a unique encoding of instructions such that unencoded instructions
injected by an attacker would fail to execute. Another medium-term research direction should be
the practical applications of Trusted Computing extensions [2,25,31] which verify the authenticity
of any code running on the machine before it is executed. Practical challenges such as managing
large lists of valid software hash values [65] and the difficulty of applying patches in the presence of
Trusted Computing defenses have prevented their large-scale deployment to date. By addressing
these challenges, Trusted Computing techniques can provide a strong defense against code injec-
tion. This is especially true given the fact that the necessary hardware modules such as the Trusted
Platform Module [65] already exists on a large number of today’s systems.

Longer term, consideration should be given to research that helps migrate programmers to
type safe languages. Typed Assembly Languages exist [60] and operating systems have been de-
veloped in type-safe languages [95] but they have not generated much interest from the systems
development community. Research is needed to determine how we can practically perform low-level
system programming in safer languages, improve usability for programmers, and aid in migrating
existing code bases.

Gap: Lack of effective techniques for detecting code reuse

Likelihood: H Impact: H Cost: M
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Description

In addition to code injection attacks (see Gap: Lack of effective techniques for detecting code
injection), memory corruption attacks enable a more dangerous and harder to detect form of code
reuse attacks [18, 19]. In code reuse attacks, attackers do not need to inject malicious code into
the victim’s memory; rather, they reuse code that already exists in memory from the application’s
code and linked libraries in order to achieve malicious behavior. In its simplest form, the attacker
can directly jump to a sensitive function [91]. In its more advanced form, the attacker can stitch
together short pieces of code (often called gadgets) to achieve arbitrary behavior on the victim’s
machine [19]. With the advent of many defenses against code injection, code reuse attacks have
become a widely popular and easily accessible tool in an attacker’s arsenal [20, 93]. Many current
attacks incorporate a code reuse stage in order to bypass code injection defenses [20]. These attacks
are much more challenging to detect because traditional defenses against code injection attacks
such as Trusted Computing techniques [2, 31], code signing [65], or any technique that focuses on
detecting foreign code on a machine does not work in stopping them. Many recently proposed
defenses against code reuse attacks such as detecting their distinct features or defenses based on
detecting anomalous control flow have been shown to be ineffective [37, 54, 64, 75]. As code reuse
techniques and tools are readily accessible to attackers [38] and modern operating systems have
somewhat better defenses against code injection attacks [84], it is expected that code reuse attacks
will continue to grow in significance in the coming years.

The root causes of this gap are very similar to those for code injection attacks. Lack of
memory safety in most popular programming languages and vast codebases that are developed in
such languages contribute to this problem.

Research Direction

Short-term research should focus on two thrusts. For new software applications, compiler-
inserted checks [25] must be combined with lightweight forms of memory randomization [37] to
detect and prevent code reuse attacks. The combination of these existing approaches can signifi-
cantly raise the bar for such attacks. For existing software applications, simple hardware extensions
such as a tagged architecture [2,92] and Intel’s SGX [6] should be evaluated and deployed to detect
code reuse attacks.

Medium-term research should focus on hardware assisted randomization and decoys to detect
code reuse attacks.

Long-term research should focus on using memory safe languages or augmenting memory
unsafe languages with efficient and lightweight features and checks that make them memory safe [39,
42]. Existing techniques fail on this front because they incur very high overhead [25].

Gap: Lack of basic understanding of information leakage attacks

Likelihood: M Impact: H Cost: L
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Description

Memory corruption bugs are one of the oldest problems in computer security [81]. One
particularly dangerous type of memory corruption attack is information leakage (i.e., memory
disclosure attacks) that has been used widely to bypass existing systems security defenses such as
memory randomization, or stack protections [47, 68]. This type of attack has become even more
common in recent years in exploits and malwares [8]. There is a severe lack of tools, techniques,
and understanding of the mechanisms and impact of information leakage attacks in the community,
and they continue to pose significant threats to existing attack detection capabilities.

The root causes of this gap are very similar to those for code injection attacks. Lack of
memory safety in most popular programming languages and vast codebases that are developed in
such languages contribute to this problem.

Research Direction

In the short-term new techniques such as code property graphs [94] can be used to analyze 
and identify this type of vulnerability. In medium- and long-term, more in depth analyses of 
the impact of information leakage on adversarial actions is necessary [31].

Gap: Approaches based on syntactic information do not work; approaches based
on semantic information are understudied

Likelihood: H Impact: H Cost: M

Description

The vast majority of attack detection approaches to date have relied on specific attack features 
(i.e., syntactic information). A special case of this gap is the antivirus community’s focus on 
signature-based malware detection, but the gap is a wider problem and has been seen in other 
communities as well. For example, detection of code reuse attacks based on an anomalous number 
of return instructions [47] (its weaknesses [67]), detection of control hijacking attacks based on 
tracking sensitive system calls [68] (its weaknesses [8]), detection of malicious code based on its byte 
representation [65] (its weaknesses [31]), and detection of malicious nodes based on IP addresses (its 
weaknesses [2]) are all examples of using syntactic information for detection (i.e., return instructions, 
certain system calls, non-printable characters, and IP addresses). The problem with syntactic 
information is that it is not intrinsic to how the attack works (i.e., semantic information). Since 
there are many ways of achieving a behavior in modern systems, syntactic information can be 
modified by an attacker to bypass detection capabilities based on such information. Polymorphic 
malware and the weaknesses associated with syntactic-based detection demonstrate this gap.

A natural step would be to focus on semantic information, that is, features of - attacks that
are intrinsically tied to what the attack does and cannot be modified without breaking the intent of
the attack. However, such techniques have been understudied and are less practical. The difficulties
in semantic-based techniques arise from multiple factors. First, the intrinsic behavior of an attack is
not always understood. Second, notions of malicious vs. benign often rely on higher level contexts.
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Third, even if the problem is well-defined, enforcing semantic-based detection often incurs a high 
false-positive rate.

The main root cause of this gap is the flexibility and expressiveness of the modern systems in
which many different valid syntactic representations exist for a given semantic behavior. Moreover,
the large volume of benign activities makes many semantic-based techniques impractical because
of false positives.

Research Direction

Short-term research should focus on automatically extracting semantic information from a
large population of attacks, specifically for malware analysis. Techniques such as the one proposed
by Fredrikson et al. [27] are the first steps in that front. Moreover, research purely based on
syntactic information or features that are not intrinsic to how an attack works should be curbed
because such techniques have been shown to be weak.

Medium-term research should focus on characterizing semantic features of large classes of 
attacks (e.g., malwares, web-based attacks, code reuse attacks, etc.) and on easily reversible 
quick reaction techniques to mitigate the impact of false positives. Note that if the actions taken 
based on a false detection are easily reversible, it would potentially allow tolerating higher false 
positive rates in practice.

Long-term research should focus on developing processor architectures and operating systems
that can be configured to be less expressive and more special-purpose [6]. By tailoring systems
toward a special purpose, the effectiveness of syntactic-based detection can be improved since there
will be fewer ways of performing an operation. This can also improve the accuracy of semantic-based
detection approaches by reducing the number of false positives.

Gap: Measures of attack surface and vulnerability scores are inaccurate and
arbitrary

Likelihood: H Impact: M Cost: M

Description

There have been many attempts to quantify and define metrics for attack surfaces [56] or
vulnerabilities [74]. Unfortunately has been little attempt to verify the validity or correctness of
such measures. To the contrary, empirical studies of attack surfaces and vulnerability exploitation
in the wild actually indicate that existing metrics are inaccurate and arbitrary [61].

The main root cause of this gap is that existing metrics quantify specific ways of attacking
systems, whereas in reality there are numerous ways of attacking systems because of their flexibili-
ties. Moreover, because the production environments in the wild do not behave like analysis ones,
subjective metrics can often prove inaccurate in practice.
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Research Direction

Short-term research should focus on defining new metrics for vulnerability scores and attack
surfaces based on observed exploitation of vulnerabilities in the wild [61].

Medium-term research should focus on developing targeted detection techniques that do not
treat all attacks and vulnerabilities the same; rather, they incorporate ground truth data collected
in the wild to detect different attacks with varying sensitivities and adjustable parameters.

Long-term research should focus on automated scoring and prioritization systems based on
observed traffic and detection events. Large-scale information sharing would be a necessary com-
ponent of such an automated system.

Gap: Anti-virus systems provide an oracle to malware writers seeking to evade
detection

Likelihood: H Impact: M Cost: H

Description

Anti-virus (AV) systems rely heavily upon signature-based detection to detect malware. This 
has numerous problems such as ease of evasion. One of the fundamental problems of AV systems 
is that they can be used as an oracle for malware writers to evade detection [83]. They can 
automatically repack and obfuscate a malware sample until it cannot be detected by any AV 
system. In fact, popular services such as VirusTotal [83] can be used for such purposes.

The main root cause of this gap is that systems are flexible and expressive enough to allow
easy perturbations to malware that achieve the same behavior, but can avoid detection.

Research Direction

Short-term research should focus on randomized and hard to reverse engineer detection 
sys-tems that cannot deterministically be evaded, but this would only mitigate this gap to some 
extent.

Medium-term research should focus on sharing analysis reports across systems and networks 
so that if the malware exposes its unobfuscated behavior on a system, it can be used protect other 
systems [36].

Long-term research can focus on designing new architectures or tagging existing ones with ad-
ditional mechanisms that allow clean separation of code and data, and are less flexible for achieving 
certain behaviors [6, 92].

Gap: Dearth of techniques focused on targeted attacks

Likelihood: M Impact: H Cost: H
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Description

The characteristics of targeted attacks are often dissimilar to those of widespread attacks.
For instance, phishing attacks may be more directed, adversaries may make more frequent use of
zero-days, or stealth may play a larger role [12]. Despite the fact that targeted attacks have unique
characteristics, current commodity detection systems and the majority of research are directed at
more general attacks. This potentially leaves a gap for network analysts at all organizations but
most notably those involved in government, critical infrastructure and services, technology, activist
groups, and sector leaders.

A cause for this gap is that all networks are unique by design, enabling adversaries to craft
custom attacks that incorporate unique properties of the target, properties that are often outside
the scope of detection systems. Spear phishing provides one example where an adversary can craft
an email using unique characteristics about the target, specifically custom content and names.
Simply avoiding the more general and widespread attributes of traditional spam emails renders
existing detectors ineffective. Another cause is that the systems on which we test our technologies
often exclude many unique elements of the target network. This is particularly challenging in the
research community where experiments are encouraged to be as generic as possible.

Research Direction

The community must first establish the requirements for detection and analysis technologies
that are capable of incorporating targeted information. The research community has begun to
provide analyses and threat models for targeted attacks, which can serve as a foundation for better
understanding the unique characteristics and requirements for new target-focused technologies [12,
21,35,69,83].

Entities must also begin to develop custom defenses, something that is rarely done in practice
today. Given the costly nature of these initial custom defenses, this should serve as more of a
medium-term solution with a main objective of refining requirements for technologies that incor-
porate network-unique aspects. Longer term, researchers should work to find more cost-effective
ways to tailor defenses to each entity.

Gap: Techniques to increase coverage suffer from path explosion

Likelihood: M Impact: M Cost: M

Description

Software analysis approaches, notably symbolic execution, are limited by the path explosion
problem [5,48]. The path explosion problem refers to the fact that the number of paths of execution
grow exponentially with the size of a program, making it infeasible to execute all paths for large
programs. Those attempting to build automated software analysis tools as well as malware analysts
are limited by this gap. It prevents analysts from detecting vulnerabilities in software and from
finding dormant behavior in malware [73].
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The root cause for this lack of coverage is that our systems are designed to be expressive and
flexible, thus operating on a wide range of input in a wide range of states, all of which need to be
covered for a complete analysis. In terms of finding dormant behavior in malware, the flexibility
and diversity of execution environments creates the potential for a vast number of program states
in which the malware can choose to hide its malicious behavior.

Research Direction

In the short-term research is needed to develop approaches and heuristics that look to achieve 
high coverage in limited but critical areas of programs. Recognizing that the path explosion problem 
persists after decades of research in this field [5], we should accept that the problem is likely to persist 
in the near term and focus our efforts on improving coverage for higher-risk code rather than the 
entirety of large programs.

In the medium-term, efforts should investigate ways to improve the parallelizability and overall
performance of path exploration. Longer term research is needed to create more efficient constraint
solvers, used for determining which input values are required for reaching given paths.

Gap: Unable to generalize detection of malicious behavior

Likelihood: H Impact: H Cost: H

Description

Detecting malicious behavior is largely limited to searching for specific known malicious prop-
erties, often as simple as exact byte pattern signatures. Unfortunately narrow indicators can
easily be evaded by malware via the use of syntactically different but semantically equivalent
code [27, 55, 73]. A substantial challenge in generalizing our detections lies in keeping false pos-
itives sufficiently low. Generalizations that are too broad often encompass benign code as well.
Closing this gap would enable the detection not just of instances of known malware as is common
today, but also of new malware. It would also reduce the ongoing and substantial maintenance
effort required for creating signatures. The gap is particularly relevant to analysts responding to
many false positives while remaining blind to false negatives from new attacks. Malware analysts
would also benefit from closing this gap. Malware analysis efforts could be drastically reduced if
analysts were able to recognize malicious behavior in one sample and correlate it with all other
samples matching this generalized behavior. Currently analysts are heavily dependent upon exact
signature matches that fail to detect even slight, automated changes to malware and do not allow
for strong correlation across related samples.

This gap is rooted in the fact that systems are sufficiently expressive and flexible, and that
there are many ways to conduct attacks and thus evade any specific detection approaches. There is
also a semantic gap in that detectors are often seeking to detect malware using obfuscated bytes as
opposed to the true malicious code. Malware is often permitted the freedom to decode itself after
detection technologies have run, which allows each piece of malware to be unique and thus bypass
signatures.
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Research Direction

In the short-term we need to improve de-obfuscation techniques as it provides a trivial way
for malware to bypass detection and is required for analyzing the true payload of malware. A
recent approach in this area provides a dynamic analysis engine that forces a binary to execute by
flipping predicates at conditional statements and monitoring for crashes [16]. It is neither sound
nor complete but may be one option for handling a large subset of binaries.

In the medium-term automated ways to identify malicious behaviors are needed, something 
that is primarily a manual process today. One promising approach automatically extracts mali-
cious behavior from benign and malicious samples using graph mining and concept analysis tech-
niques [27]. Long-term efforts should examine approaches that are less reliant upon specifics of 
attacks, such as data flow analysis and policy violation detection.

Gap: Inability to predict attacks

Likelihood: M Impact: M Cost: M

Description

There is currently minimal capability for predicting the targets and types of targets. The
ability to predict attacks would enable more timely detection, better collection of information, and
ultimately more thorough attack analyses. Researchers and developers could build more applicable
detection tools and analysts could configure sensors to provide more focused logging. Unfortunately
any existing prediction approaches are limited to known attacks, similar networks, or require ex-
tensive human specification of possible attacker actions [21] [69]. The root of these challenges
arises because of the large number of ways to attack systems and the variations in systems and
networks. Additionally, the enormous volume of baseline network traffic limits or eliminates more
computationally intensive analyses.

Research Direction

Useful predictions may take significant research effort but the most immediate results may
be realized by focusing on predicting identical systems or systems running identical software before
moving onto predicting attacks on more dissimilar systems and networks. One promising approach
is to detect websites that might soon be compromised based upon past compromises at similar
sites [79].

In the mid- to long-term research should be undertaken that improves the ability to predict
types of attacks rather than simply the targets of attacks.

Long-term there is a more fundamental game-theoretic problem that if the attacker expects 
defenders to predict certain actions, the attacker will take a different action. Approaches must 
therefore also be developed to conceal predictions and to confuse the adversary.

Gap: Lack well-accepted attack taxonomies

Likelihood: L Impact: L Cost: L
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Description

Improving the analysis of attacks requires well-developed taxonomies that capture the steps,
requirements, and dependencies of attack components. The lack of such taxonomies results in
analysts and researchers creating informal mental models of attacks, reducing quality and increasing
overall defensive effort due to a lack of sharing. Decision makers also have limited ability to predict
potential results of investments in a given area due to the lack of structured ways for understanding
how that area impacts related components of attacks. Network designers and operators also require
attack taxonomies to aid with determining sensor placement and to know what information about
an attack could be captured at each vantage point. The expressiveness and flexibility of our
systems has enabled attackers to accomplish goals in an extremely large number of ways and this
has complicated the creation of, and agreement upon taxonomies.

Research Direction

Overly general taxonomies have proven challenging to create and have not seen widespread
adoption. To achieve more useful results in the short-term, research should be highly targeted to
specific classes of attacks. Recent work described in [81] provides a strong foundation for establish-
ing a taxonomy for memory corruption attacks by presenting a model of steps, requirements, and
dependencies for these types of attacks. These highly targeted taxonomies can be broadened in the
medium-term. The long-term objective is to incorporate the taxonomies from various attack areas
into more general taxonomies while maintaining utility.

3.4 PRODUCTION AND ANALYSIS ENVIRONMENT ASYMMETRY

Gap: Lack of data sets to evaluate the ground truth

Likelihood: H Impact: H Cost: L

Description

Data sets are required for assessing the effectiveness of attack analysis technologies, compar-
ing across technologies, and evaluating potential improvements. The lack of appropriate data sets
remains a substantial problem in the security community in general, and is particularly pronounced
in malware detection [73]. Notably, many technologies cannot be fully evaluated because we lack
data sets with ground truth. Historical samples are traditionally used, which are often not repre-
sentative of future attacks. Further, the ground truth in such data sets is typically labeled at a very
high level, such as malware or not malware, prohibiting more granular evaluations. Organizations
that have higher fidelity data sets are often discouraged from making them available due to con-
cerns about revealing sensitive information to the public while retaining meaningful information for
analysis [28]. This gap hinders researchers evaluating potential detection mechanisms, developers
of detection models, and those computing risk.

The main cause for the lack of data sets is that we do not know the relevant data from
our production environments that should be captured. Additionally, more useful data is often left
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underexplored as we lack means for properly anonymizing our data and thus are unable to share
the best data sets.

Research Direction

Short-term efforts are needed to build more representative, current, and transparent data sets.
The work described in [73] can serve as a starting point for better understanding current deficiencies
and provides some specific suggestions for improving malware experiments. The data sets should
be more realistic and more dynamic, potentially utilizing a sliding window that incorporates more
recent data and phases out irrelevant data [89].

In the medium-term research is needed to improve privacy-preserving approaches for anonymiz-
ing data sets in order to encourage publication and sharing [28]. In addition to improving anonymity
this research must simultaneously consider the extent to which data attributes necessary for eval-
uating detection technologies are preserved.

In the long-term a stronger community should be created that focuses on data set creation.
Attention must be given to making improved data sets widely available and providing guidance for
the creation of new sets by the community.

Gap: Attack identification and analysis in isolated environments provides little
fidelity

Likelihood: H Impact: M Cost: M

Description

Malware analysis often requires execution of a sample to observe its behavior (dynamic anal-
ysis) because of the limitations of static analysis. However, for safety and liability reasons the
analysis environment has to be isolated from other networks (e.g., the Internet). This creates a
strong tradeoff between the fidelity of the analysis and the isolation [32]. Many malware samples do
not expose their malicious behavior unless they can connect to their C2 infrastructure. Moreover,
by the time the analysis is conducted, it is possible that the C2 infrastructure does not exist or has
been taken down. This is particularly a problem if the malware decrypts its payload only if it can
receive a key from the C2 infrastructure. As a result, it is possible that dynamic analysis provides
little fidelity for analyzing many samples because it is hard or impossible to provide the correct
stimuli for the malware in an isolated environment. Note that even in the exact same environment
many malware samples show different behaviors at different times [55]. This can be due to random-
ized behavior coded into their logic so that they can take different roles in the wild (e.g., a portion
of them can become scanners for new victims, another portion can become C2 nodes, etc.).

The main root cause of this attack is the difference in the behavior of the analysis envi-
ronment (an isolated system) and the production one (a system with connectivity to malware C2
infrastructure). Replicating the exact production environment for this purpose can be impossible to
achieve since the C2 infrastructure may no longer be available. Another root cause is the semantic
gap between that which is captured and understood by malware analysis platforms and the actual
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meaning of malware activity, such as higher-level communications with its C2 servers for unpacking
and decrypting.

Research Direction

Short-term research should focus on trying to emulate the expected environment of the mal-
ware using dummy protocol implementations or captured C2 traffic from other instances of the
same malware [32]. Path exploration techniques may also be used to improve the fidelity, but they
face the same challenges in isolation.

Medium-term research should focus on automated sensors for capturing malware C2 commu-
nication for the purpose of repeatability of malware analysis and providing proper stimuli.

Long-term research should focus on automated approaches for analyzing a large repository
of captured C2 communication against a given malware sample in order to invoke and analyze the
behavior of interest.

Gap: Malware analysis often lacks correctness, transparency, and realism

Likelihood: M Impact: M Cost: M

Description

Evaluating the effectiveness and accuracy of attack detection and analysis techniques often
involves experimentation with live malware samples. However, many such studies in practice lack
correctness, transparency, and realism [73]. Issues such as contamination with benign software,
unbalanced distribution of malware samples over malware families, incorrect privilege levels for the
analysis system (which allows evasion by the malware), ignoring malware artifacts, and unrealistic
background activities often make such analysis incorrect. In addition, lack of information about
malware families used, sample selection strategies, system configurations and connectivity, and the
rationales for false positives/negatives and true positives hurt the transparency and repeatability
of such analyses. Finally, problems with studying irrelevant malware families, difficulties with
real-world (production environment) evaluation, generalization from a single configuration (e.g.,
generalizing Windows XP results to Windows 7), lack of proper stimuli for the malware, and lack
of Internet connectivity makes such evaluation unrealistic.

The main root cause of this gap is that the environment that is used for malware analysis has
a different behavior than the production environment in terms of its configurations, distributions of
malware, and workloads, among other attributes. Other contributing factors are that our analysis
is static (temporally and spatially) whereas malware is dynamic, and that there is usually a large
volume of mostly benign activities that are missing in a malware analysis environment.

Research Direction

Short-term research should focus on developing a corpus of malware samples that is 1) rep-
resentative: it has samples from all current families, 2) dynamic: it frequently retires old samples,
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and 3) balanced: it has the correct distribution of malwares. The corpora should include proper
tagging of samples based on their targeted environment and configurations.

Medium-term research should focus on emulated approaches for providing the expected envi-
ronment and stimuli for the malware under analysis.

Long-term research should focus on generating realistic background activities or making the
analysis environment look like the production one in order to achieve better realism and correctness.

Gap: Dynamic analysis techniques have limited coverage

Likelihood: M Impact: M Cost: M

Description

Dynamic analysis is a primary means for detecting malicious software as well as determining
its behavior. In comparison with static analysis, it is a low-cost approach that requires less manual
analysis and expertise. The major limitation is that it only provides coverage for a fraction of a
program; specifically, it looks at the exact execution sequences encountered during a given run (or
small set of runs) of a program. It is challenging to achieve high coverage even in benign appli-
cations, which often contain too many paths to feasibly evaluate. Dynamically analyzing malware
is significantly more challenging because malware specifically employs tactics to prevent dynamic
analyzers from reaching malicious paths by checking if it is executing in specific environments.
Recent studies have claimed that as much as 81.4% of malware samples employ anti-virtualization
protections [50]. Such protections are intentionally designed to prevent malware from executing ma-
licious sequences while running inside virtual environments, which are commonly used for dynamic
analysis. This gap in coverage prevents analysts from understanding malware without substantial
investment in reverse engineering time and expertise, which is not feasible at scale given the sheer
volume of malware. It also hinders researchers from better understanding and classifying malware.

The primary root cause is that it is hard to replicate the environment that is expected by the
malware and thus trigger the dormant behavior. Thousands of environmental artifacts exist on any
given system that malware can examine before triggering its payload, including software versions,
CPU implementations [49], and timing measurements.

Research Direction

Short-term efforts should develop automated ways of presenting environments to malware.
For instance, ROZZLE [50] attempts to multi-execute JavaScript malware and follow all paths that
are dependent upon environment-specific variables. Another promising approach attempts to reveal
dormant behavior in browser extensions by running browser extensions on web pages specifically
built to contain common elements of interest to malicious extensions [46].

Medium-term efforts should design production environments to match analysis environments.
While it is not feasible to replicate all possible environments, it is much more feasible to make
a small set of known environments appear similar. With this approach the malware is forced to
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decide between the risk of exposing behavior to dynamic analyzers or missing an actual exploitation
opportunity.

Longer term research needs to support creating sensors that build dynamic analysis into
the hardware itself [26, 49]. While hardware may indeed leave some artifacts for the malware to
investigate, the surface is likely smaller than the current software-based sensors. Further, identical
hardware could be deployed on both production and analysis systems, forcing the malware to decide
between analysis evasion and infection rate.

Gap: Malware analysis often not repeatable

Likelihood: M Impact: M Cost: M

Description

Repeating previous executions of malicious software is important for analyzing the behavior
of unknown malware and for performing malware experimentation. There is currently a gap in
mimicking the initial execution of malware during any subsequent dynamic analyses. This pre-
vents reverse engineers from fully understanding the impact of a malware infection and it hinders
researchers in their efforts to evaluate malware analysis technologies, particularly those attempting
to validate results. Repeatability of malware analysis is particularly hard because the infrastructure
that controls the malware may be gone or taken down at the time of future analyses [32]. Repeating
malware executions also introduces the challenge of containing the malware and preventing further
damage.

The root of this gap stems from the fact that it is hard to replicate the initial infection
environment. Infrastructure is volatile and the state of external infrastructure is often outside the
control of the analysts, preventing exact repetition. This is exacerbated by the fact that malware is
often designed to change its behavior with even slight changes to the environment [55]. Furthermore,
protocols are commonly manipulated in non-standard ways [51] and custom protocols may even be
used that require extensive manual reverse engineering effort in order to emulate.

Research Direction

Research should be directed towards emulating the infrastructure required by the malware 
such as network protocols, services, and hosts. In the short-term focus on protocols that are 
custom-developed but widely used by malware. Improving the ability to fingerprint protocols is an 
important component for determining how widely used a given protocol is amongst malware. In 
the medium-term it may be possible to automatically learn some protocols [32] in order to avoid the 
manual process of reverse engineering a protocol. Longer term, approaches are needed for emulating 
the victim hosts, which are often generic systems. In this way, the damage to victims can be limited 
if analysts must allow malware to contact malicious infrastructure for deeper analysis.

Gap: Machine learning effectiveness is fundamentally difficult to evaluate

Likelihood: L Impact: L Cost: H
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Description

Machine learning (ML) techniques have been proposed in many cyber security contexts. How-
ever, the effectiveness of such approaches is very hard to evaluate since in many cases they learn on
features that do not necessarily have strong ties to attacks. For example, approaches such as the
one proposed for detecting malicious PDFs [77] learn on certain features such as file size, various
header sizes, and offsets; however, these features do not necessitate maliciousness. The other side
of this problem is that by changing these features, malware can evade being detected by ML-based
approaches [89].

The main root cause of this gap is the difference between analysis environments and produc-
tion ones. In production environments features used by the ML algorithms can take many different
values while in the analysis environment they have limited values and they may be over-learned.
Another contributing root cause is the large volume of mostly benign activities that make ML
difficult and hard to evaluate.

Research Direction

Medium-term research should focus on ML approaches that operate under models that prevent
simple evasion by adversaries [89]. This can be achieved by ensuring that the adversary cannot
interfere with either the training phase or the classification phase of ML-based approaches.

Long-term research can focus on extracting features that are necessitated by particular attack
vectors, so that they cannot be perturbed by an attacker.

3.5 LEGACY SUPPORT REQUIREMENTS

Gap: Most UDP-based protocols are hard to analyze using stateless methods

Likelihood: M Impact: L Cost: M

Description

UDP-based protocols are prone to replay attacks because of IP spoofing. However, detecting
such attacks can be very hard because it requires stateful analysis on the detection side while the
protocol itself is stateless [72]. As a result, the analysis logic should be much more complex than
the attack itself, which creates unbalance in the attacker’s favor.

The main root cause of this gap is the requirement to support legacy protocols (e.g. UDP).
These protocols where designed decades ago for a different environment, and the fact that modern
systems still use and support them creates an uphill battle for detection of misuse attacks against
them. Another contributing problem is the loose tying between identities and entities in the network
that allows spoofing.
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Research Direction

Short-term research should focus on detecting and blocking spoof-enabled Autonomous Sys-
tems across the network to prevent IP spoofing [53].

Medium-term research should focus on better tracking approaches that can avoid IP spoofing 
problems and analyzing trends and evolutions of different regions and subnets on the Internet.

Long-term research should focus on designing new network protocols that are more amenable 
to clustering and analysis of regions and prevent spoofing and anonymous redirection altogether.

3.6 SENSORS ARE STATIC SPATIALLY AND TEMPORALLY, WHILE ATTACKS
ARE DYNAMIC

Gap: Attack identification/detection techniques often ignore important facts

Likelihood: H Impact: H Cost: M

Description

Attack identification/detection is hard in general. One way to tackle hard problems is to
incorporate facts and ground truth in tackling the problem. Unfortunately, the vast majority of
attack identification and detection capabilities ignore such facts [61]. Most existing identification
and detection capabilities are built to work for generic attacks and vulnerabilities, while ignoring
the skewed distributions and practicalities of such attacks and vulnerabilities. For example, most
vulnerability analysis tools and techniques treat most vulnerabilities alike [66], or at best incorpo-
rate scores such as the CVSS scores. However, it has been shown that in reality, a small number
of vulnerabilities account for the majority of attacks and that such scores are an inaccurate pre-
dictor of how widely the vulnerability will be used by attackers [61]. Skewed distributions in the
wild relate to practicalities of exploiting certain vulnerabilities or mounting attacks, but existing
detection and analysis capabilities often ignore them. Moreover, the notions of attack surface based
on lines of code or input/output channels [56] are inaccurate in capturing actual vulnerability of a
software application to attack because even exploited vulnerabilities have disproportionate impact
on the attack surfaces in the wild [61]. These facts and ground truth information can also be used
for prioritization of vulnerabilities for patching, targeted attack detection, resource allocation for
analysis, etc.

The root cause of this problem is that sensors are static spatially and temporally. The fact
that we rely on old snapshots of reality to make prioritization decisions (temporally static), and
that we analyze attacks and vulnerabilities in a test environment and generalize the results to every
system (spatially static) contribute to this problem.

Research Direction

Short-term research should focus on developing new metrics to prioritize attacks and vulner-
abilities while incorporating their correct distributions and their actual impact on attack surfaces.
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A scoring system using the metrics developed in the related work [61] would be the first step to
improve CVSS scores.

Medium-term research should focus on developing targeted detection techniques that do not 
treat all attacks and vulnerabilities the same; rather, they incorporate ground-truth data collected in 
the wild to detect different attacks with varying sensitivities and adjustable parameters. For 
example, if a vulnerability is being actively exploited, we can treat possible false positives with more 
strict actions. On the other hand, if a vulnerability is very hard to exploit, some false positives can 
be ignored.

Long-term research should focus on automated scoring and prioritization systems based on 
observed traffic and detection events. Large-scale information sharing would be a necessary com-
ponent of such an automated system.

Gap: Lack automated ways to build detection technologies from attacks

Likelihood: H Impact: M Cost: M

Description

Attacks are constantly changing, not only do new vulnerabilities appear every day but the
same vulnerabilities can be exploited using many different payloads [62]. Current detection tech-
nologies have fixed update cycles that typically involve manual signature creation. One way to
keep pace with constantly evolving attacks is to update our detection technologies by way of the
attacks themselves. While in many cases this may require at least one system to be attacked, there
is potential for the information learned from that attack to be useful for all other systems. Closing
this gap could vastly limit the effectiveness of attacks to just a single system or a small group of sys-
tems. The existence of this gap is a major challenge for those building detection technologies while
spending tremendous amounts of manual effort to maintain them, it impacts network operators
seeking to limit the damage to their network, as well as analysts.

The cause primarily lies in the fact that our detection technologies are largely static, updated
at fixed patch points using specific signatures generated from manual analysis, as opposed to more
continuous techniques that automatically incorporate the information learned from attacks. A
secondary cause stems from the fact that we lack reversible or low impact defenses and thus are
often hesitant to deploy automated strategies that might have significant operational ramifications.
Detection technologies have an advantage in this regard in that one low impact course of action is
to simply alert. This makes detection a strong candidate for automated approaches in comparison
to other areas of defense.

Research Direction

In the short- to mid-term research is needed to identify potential candidate areas for detection 
technologies. The DARPA cyber grand challenge [24] is creating a completely automated capture-
the-flag exercises where systems will automatically attack and defend one another. Expect research 
stemming from this program to provide insight into the feasibility and challenges of automated 
approaches.
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Mid- to long-term research should seek to build automatic detection approaches in the identi-
fied candidate areas. Focus should initially be on using information about a small group of infected
systems in order to generate detection information about similar systems that have yet to be in-
fected. One promising approach [79] uses information from compromised web servers in order to
detect similar sites that are also vulnerable and may soon be attacked. Other work has provided
foundational ideas for automatically developing signatures and has attempted to automatically cre-
ate signatures for worms that change their payload with each infection attempt in order to evade
signature detection [62]. Another related research area that is in its early stages involves automat-
ically generating patches for vulnerable C programs given a faulting program and a set of program
test cases [90].

Gap: Analysis of IP address spaces to detect malicious subnets is static and
incorrect

Likelihood: M Impact: L Cost: M

Description

Many network reputation analysis techniques rely on analysis of IP address regions to deter-
mine their maliciousness [52, 87] in order to implement filters or blacklists. However, this type of
analysis is often incorrect because it is static and has single granularity. For example, techniques
that analyze IP regions at the given granularity (e.g., /8 addresses) assume that all machines in that
region have similar security postures. This may be true for a single organization (e.g., a university
network), but it is not true for an ISP (e.g., different machines in AT&T /8 addresses can have
very different postures). Moreover, since this type of analysis is often static, it assumes a fixed
distribution over the entire region, whereas in reality attackers move and evolve in different regions
which make the distribution time-dependent. As a result machine learning techniques based on
such fixed distribution assumptions are not applicable in this context. Finally, the aggregation
of smaller subnets into larger regions should be dynamic. A predetermined aggregation strategy
suffers from the above-mentioned problems [86].

The main root cause of this gap is that the analysis algorithms are static (e.g., predetermined
aggregation, fixed granularity, etc.) while the maliciousness of an IP region is dynamic.

Research Direction

Short-term research should focus on deploying already developed dynamic clustering tech-
niques [86] to analyze IP regions in a more flexible way.

Medium-term research should focus better tracking approaches that can avoid IP spoofing
problems and analyzing trends and evolutions of different regions and subnets on the Internet.

Long-term research should focus designing new network protocols that are more amenable to 
clustering and analysis of regions and prevent spoofing and anonymous redirection altogether.
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3.7 LOOSE TYING BETWEEN IDENTITIES AND ENTRIES OVER THE NET-
WORK

Gap: Reputation metrics are insufficient to prevent botnets from operating

Likelihood: H Impact: M Cost: M

Description

Botnet operators have a large number of evasion and obfuscation techniques that prevent 
reputation metrics from becoming sufficient data sources for preventing botnets from operating 
at high efficiency [40]. Reputation metrics are still useful information sharing databases to incur 
maintenance costs upon botnet operators and to help network defenders clean up their networks. 
However, tier 3 threat actors can easily invest in botnet evasion and obfuscation techniques to 
create new botnets after they have derived the value out of older and detected botnets.

Research Direction

Nazca [40] demonstrates a system that finds botnets via behavioral characteristics on the net-
work. The key insight is that botnet operators wish to install their botnet on the largest population
possible. Nazca works at the ISP level and focuses on detecting the malware installation stage via
network calculated aggregates. The malware installation is focused on determining whether or not
an executable/binary download request over HTTP shares traits common with malware downloads
as opposed to benign software downloads. For example one trait is whether or not a binary being
downloaded is downloaded from a large number of unique URLs, which is a common detection
evasion technique.

Future research in detecting botnets follows the research direction of detecting behaviors that
are common to malware and not common to other applications. Long-term this will result in an
enumeration of malware behavioral characteristics, which will lead to the discovery of a core set
of behaviors that must be performed in order to be malware. Perfect detection will be limited by
whether or not these behaviors are exclusively used by threat actors. Without exclusive behavior,
botnet detection will always be a cat and mouse game where botnet operators learn the detection
thresholds of the defensive actors and tweak their techniques to evade the detectors. Defensive
actors will pull samples of new botnet behavior to find the evasion and tweak their thresholds and
metrics to continue to track and block such botnets. However, once a cat and mouse steady state
is achieved we can start to measure whether or not botnet creation and maintenance remains cost
effective for tier 3 threat actors.

Gap: IP addresses cannot be trusted as identity on the Internet

Likelihood: H Impact: H Cost: H

Description

The Internet was designed to be self-healing and to reliably deliver packets from end points to
end points; it was not designed to verify the authenticity of packets. As such there exist numerous
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methods of faking identities on the Internet. The Internet as a whole continues to allow 2692 
autonomous regions to spoof IP addresses [53]. Furthermore, control of IP space changes rather 
quickly over time [86], which means that adversaries can simply shift to new IP space with little cost. 
As such, an IP address cannot be used as a strong indicator of identity in order to determine who is 
responsible for an attack, and therefore tracking campaigns of attacks is difficult.

Research Direction

Most attribution-based research methods use additional sources of information to attribute
identity to entities on the Internet. One technique that has been used to some success is to use
layer 7 HTTP fields to identify actors [96]. The idea is to compute fingerprints that are derived
from HTTP fields in order to identify a network actor who may change their network layer identity,
but not change their applications. This technique uses the user-agent string combined with IP
addresses to identify common actors. For research directions this work highlights the feasibility
of using layer 7 information to fingerprint the application and thus the actor that generated the
traffic. Each type of common Internet protocol (e.g., HTTP, DNS, NTP) could be investigated for
statistically significant fields that can be used to derive the fingerprints of each adversary’s specific
applications and techniques. If such fields can be located, adversaries will find it more difficult to
fake their identity.

Gap: DNS is not secure; DNS can be used to bypass most protocols

Likelihood: H Impact: M Cost: H

Description

The domain name service (DNS) protocol is critical to the Internet. As such, it cannot be
turned off even though it was never designed to be secure, and it was designed to be used in
new and unique ways. There are numerous findings that DNS is abused to conduct malicious
behavior. For example, DNS is often used to create covert and difficult to block command and
control channels [29], and is the source of many unexplainable DNS transactions. DNS has also been
used to establish covert network tunnels, because most access points rely upon DNS to implement
security and payment redirection controls [4]. As a result, DNS remains a viable method to conduct
covert activities and bypass security mechanisms.

Research Direction

There are no short-term solutions to this problem. Every Internet protocol depends upon
DNS to operate, and because DNS servers are not centrally managed there is no mechanism to
secure the behavior of DNS. More work in the spirit of the DNS analysis in [29] is required to
determine what reforms to the DNS protocol are needed, or discover methods to separate malicious
DNS activity from benign behavior.

Gap: Ability to evaluate the security posture of the Internet as a whole in order
to predict attacks - defenders are solely focused on individual networks

Likelihood: H Impact: M Cost: H

32



Description

The Internet is a federation of independent actors. As such, each actor manages their own
network, and they focus only on their own defense of their networks. However, most networks and
services share common code bases and are vulnerable to the same types of attacks. Since each
network is managed by a different actor, each network that shares a common vulnerability will be
patched in the timeframe that each actor decides upon. Internet sites that rely upon common code
bases have no way to share their defensive postures with each other.

Research Direction

There are techniques that use data mining to determine sites that have shared code base, and
use this information to predict which sites on the Internet will become compromised [14]. These
techniques work because the data mining techniques use features such as the name of content
management systems, which if vulnerable to attack become a good predictor of future compromise.
Research in this direction should be focused on fingerprinting other sites as early warning indicators
of possible comprise in the system that needs to be defended.

Gap: Different anti-virus/anti-malware software are inconsistent in malware la-
beling and family identification for the majority of samples (i.e., voting does not
work)

Likelihood: L Impact: L Cost: M

Description

Malware corpora are organized by whoever constructs the corpus. Since there are a large
number of malware variants, there is inconsistency in malware classification [40]. Recent studies
show that the majority of antivirus and antimalware systems label the majority of malware samples
inconsistently. As such, there is a need for a common method to classify malware.

Research Direction

Data mining techniques have been proposed to cluster malware according to antivirus databases [67].
These techniques attempt to reconcile the different information presented by different antivirus
databases. However, an alternative trend in research is to derive behavioral specifications of mal-
ware [27]. This research has resulted in a tool called Holmes that records activities of malware to
create a specification of that malware’s behavior. Holmes has been evaluated for detecting new
types of malware that is similar to previous samples of malware; however more research is required
to determine if behavioral specifications can be used to identify new malware variants.

3.8 ENORMOUS VOLUME OF UNKNOWN ACTIVITIES (MOSTLY BENIGN)

Gap: Lack of standard analysis of memory corruption attacks

Likelihood: M Impact: H Cost: L
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Description

Memory corruption bugs are one of the oldest problems in computer security. Applications
written in low-level languages like C or C++ are prone to these kinds of bugs. The lack of memory
safety (or type safety) in such languages enables attackers to exploit memory bugs by maliciously
altering the program’s behavior or even taking full control over the control-flow [81].

The common problem with memory corruption attacks is the enormous diversity in the effects
of such attacks. As such, every memory corruption attack must be analyzed to determine its purpose
and effect.

Research Direction

As long as security critical applications are written in memory-unsafe languages, memory
corruption attacks will be an effective attack vector [81]. Furthermore, it is impossible to detect
such attacks without secondary indicators such as system invariant violations [71]. Research should
be focused on replacing applications that are written in memory-unsafe languages with applications
that are written in memory-safe languages.

Gap: White lists and black lists are not sufficient because they are mostly un-
manageable

Likelihood: H Impact: M Cost: H

Description

White lists and black lists are common mechanisms used to detect when a protected system 
is communicating with an undesirable communicant. However, white lists become unmanageable 
when a networked system needs to be able to communicate with any non-hostile devices. Such 
situations are commonplace in the enterprise environment since most work computers need to access 
a variety of Internet-based services that change over time. It becomes difficult to manage an accurate 
black list for hostile actors on the Internet because malware authors may change their network 
identities faster than the black list can be updated [53].

Research Direction

Promising research directions to address the weaknesses of relying on white lists and black
lists involve using an additional reputation source for different data sources to identify malware
actors on the Internet. One technique, CAMP [70], computes a reputation score for downloaded
binaries to determine if the download server is malicious. This system is provided as a plug-in
to Google Chrome and it uses Google’s Safe Browsing API to detect known malicious binary by
checking Google’s list of known malicious binaries. For binaries that are not listed as malicious
the plug-in rates extracted features from the download and the server behavior, and sends this
information to Google’s service to provide additional behavioral checks for maliciousness.
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Gap: Machine learning (ML) has an unacceptably high error rate for detecting
attacks, and anomaly detection techniques cannot reliably detect attacks

Likelihood: L Impact: L Cost: M

Description

Machine learning techniques classify data according to precise questions and quality (validity)
of the data set with which the algorithm is trained. In an environment such as the Internet, the
variability of data sources and missions makes training an accurate classifier infeasible [80]. Fur-
thermore, any positive match requires human investigation to determine whether or not the activity
is an attack; therefore, false positives, which are common in machine learning techniques, are costly
in human asset time. Furthermore, research has shown that N-gram techniques are fundamentally
incompatible with reliable attack detection [34]. As such, machine learning techniques cannot be
relied upon to find undetected attacks.

Research Direction

Since automated machine learning techniques are ineffective at detecting unknown attacks, 
research should be directed to using automation to enable human analysts to quickly investigate 
network activity. Human intuition is the most reliable method of detecting malicious activity, 
since automated methods are easily gamed and evaded [34, 80].

3.9 UNDERDEVELOPED REVERSIBLE AND LOW IMPACT DEFENSES

Gap: Zero-day exploit campaigns last on average almost a year; they are patched
so slowly that they are weaponized by the attackers

Likelihood: H Impact: H Cost: L

Description

The average window of time for a zero-day exploit, once it has been revealed to the world, 
is 312 days [11]. As such, any disclosed vulnerability becomes a real candidate for the short-term 
exploitation of live vulnerable systems. Two current cases of such attempts for short-term 
exploitation of systems have been recently observed with HeartBleed [30], and ShellShock [85] 
vulnerabilities. Even when vulnerabilities are high profile, it is a sufficiently rewarding strategy for 
adversaries to attempt to exploit these vulnerabilities during the window of opportunity provided 
by the vulnerability.

Research Direction

There are no specific research programs that can fully alleviate the window of opportunity
caused by zero-day disclosures. Current practice is to monitor a protected system during the win-
dow of opportunity in order to detect if vulnerable resources have been attacked. All research that
facilitates the monitoring of systems to detect and block remote exploitation (e.g., SNORT [22])
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contribute useful tools for preventing adversaries from exploiting vulnerable systems, and for 
deter-mining the impact of successful attacks on vulnerable systems.

Gap: ML provides no method to make sense of detection of possible attacks

Likelihood: L Impact: L Cost: M

Description

Unless machine learning training sessions are conducted with rigor and preciseness, detectors
that are generated by a machine learning algorithm cannot explain why an attack is an attack [80].
As a result, humans must investigate and explain detector results at great cost.

Research Direction

Research in this area should be focused on creating a detector that can be quickly verified by
human operators. Any research that complicates the process of operators determining the cause of
an attack detection should be eliminated.

3.10 SYSTEMS IMPLICITLY OR EXPLICITLY TRUST THE USERS

Gap: Almost all VM-based attack analysis techniques and virtual machine intro-
spection (VMI) methods assume trust in the guest OS

Likelihood: L Impact: L Cost: L

Description

Virtual machine introspection (VMI) is a fundamental technique for safely executing and/or
emulated untrusted code binaries for analysis. In order to execute this untrusted code, the ap-
propriate guest operating system (OS) must be included in the VM execution image in order to
correctly emulate the execution of the untrusted binary. The current OSs have not been designed
to be transparent to analysis, and so all VMI techniques must either account for the behavior of
the OS, or risk allowing analysis of untrusted binaries to become unsound [41].

This problem has commonly caused the semantic gap between the guest OS and the VMI
technique. This gap stems from the fact that untrusted binaries can comprise and change the
expected behavior of the operating system, and different versions of each OS will use different
memory layout for key data structures, which complicate the construction of analysis tools. This
semantic gap means that analysts cannot trust their analysis of executed binary without analyzing
the effect the binary has upon the guest OS, which may be an intractable endeavor.

Research Direction

There are no short term research directions to address this gap. Addressing this gap requires
the redesign of modern operating systems such that each operating system has formal specification
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of expected behavior. Work has been performed to create formally verified secure microkernels such
as the seL4 project [63]; however, such kernels have not been specifically created to facilitate VMI.

Gap: Attackers can easily hide in ill-defined web standards; web-based attacks
all arise from this problem (XSS, CSRF, etc.)

Likelihood: M Impact: H Cost: H

Description

Many web standard behaviors implicitly trust the referenced server. This enables many
attacks against the users of a web service such as cross-site scripting attacks [44]. As such, web
security depends heavily upon the website to implement sanity checks and security mechanisms to
protect users of websites.

Research Direction

There are proposed methods to refine site authentication methods using JavaScript that
is served by the website to provide additional protection against unintended cross-site security
references [44]. This method is a password based authentication method that is claimed to be
secure by default. Investigation into whether or not a critical website would benefit from this
technique needs to be performed.
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4. SUMMARY OF RESEARCH DIRECTIONS

In our gap analysis and evaluation of promising research directions, we have encountered
seven high-level areas of research applicable to multiple gaps that can improve the attack analysis
capabilities significantly. In this section, we describe these high-level directions. Note that the
specific research directions have already been covered under each gap, and this section serves as a
summary of the previous section.

POPULATION-BASED ATTACK ANALYSIS

Many attack analysis capabilities to date have focused on studying individual attacks; how-
ever, they suffer from the weaknesses and gaps covered in the previous section. Multiple promising
research efforts that attempt to improve attack analysis capabilities shift the focus from individual
attacks, to studying the population of attacks to form better fidelity and effectiveness. For example,
in the malware analysis area, one such technique extracts the behavioral models of a population
of malwares in order to better analyze a malware sample [40]. Another example of this general
direction is analyzing communication patterns of a large population of nodes to detect botnets, as
opposed to detecting the exploitation attempt of the botnet on one node [33].

DYNAMIC SENSORS

Another general research direction to cover many of the gaps is using detection sensors that
are more temporally and spatially dynamic. For example, numerous promising techniques have
incorporated information from sensors placed on multiple parties involved in an attack (spatial
dynamics) to detect attacks with better fidelity [43, 46]. In addition, other promising techniques
have proposed temporal dynamics in the sensors. For example, one such technique changes the
environment presented to malware to better expose its behavior [50] and another proposes a more
temporally dynamic IP clustering and malicious subnet detection technique [86].

COLLABORATIVE ATTACK ANALYSIS

Many obfuscated attacks and sophisticated zero-day exploitation attempts may be impossible 
to detect completely for years to come. However, many promising research efforts suggest a more 
collaborative way to limit the damage of such attacks after the first few compromises. This would 
require information-sharing among enterprises (e.g., USG or DoD systems). For example, if the 
malware’s payload is obfuscated, as soon as it is de-obfuscated on a system and the malware 
exposes its behavior such information can be shared with other enterprises to provide them with 
better insights into that malware. Collaborative attack analysis can also significantly improve the 
accuracy of reputation-based metrics, provide better malware stimuli, and limit the damage of 
targeted attacks.
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AUTOMATION

Another important research direction that can mitigate numerous gaps is incorporating more
automation into currently manual processes. For example, automated signature-generation tech-
niques, automated adjustment of sensor thresholds, and automated and revisable reaction capabil-
ities can improve numerous gaps.

MULTI-RESOLUTION ANALYSIS

An important problem in many existing attack identification and detection capabilities is that
they treat all vulnerabilities, attacks, and systems alike. A promising direction in various gaps is
to make the analysis multi-resolution and dedicate more resources and in-depth analysis to more
severe vulnerabilities, more common attack vectors, more sensitive parts of a code, and generally
more sensitive parts of a system. Considering unbalanced distribution of these aspects in real world
systems can help more effectively detect attacks with lower false positives.

REPRESENTATIVE CORPORA

Better taxonomies of attacks, and more representative databases of attacks and malwares
have been identified in many research efforts as a high-priority short-term direction. For example,
representative malware databases must incorporate relevant malware, have balanced distribution
of malware samples, have balanced distribution of malware families, and must incorporate proper
mechanisms for retiring old and no longer relevant malware samples.

USING HARDWARE EXTENSIONS

Hardware support is missing in many areas of attack detection and prevention. However,
many existing hardware extensions can be better utilized to improve the state of such capabilities in
the short-term. For example, Intel Memory Protection Extension, Inter Software Guard Extension
(SGX), Intel Trusted eXecution Technology (TXT), and in general hardware-assisted randomization
and tagging can improve current attack detection capabilities significantly.
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TABLE 3

Overall Gap Prioritization Table

Number Gap Likelihood Impact Cost

1 Static analysis techniques are hindered by pack-
ing and obfuscation techniques

H H L

2 Lack of data sets to evaluate the ground truth H H L

3 Zero-day exploit campaigns last on average al-
most a year

H H L

4 Lack of basic understanding of information leak-
age attacks

M H L

5 Lack of standard analysis of memory corruption
attacks

M H L

6 Lack of effective techniques for detecting code
injection

H H M

7 Lack of effective techniques for detecting code
reuse

H H M

8 Approaches based on syntactic information do
not work

H H M

9 Attack identification/detection techniques often
ignore important facts

H H M

10 Measures of attack surface and vulnerability
scores are inaccurate and arbitrary

H M M

11 Attack identification and analysis in isolated en-
vironments provides little fidelity

H M M

12 Lack automated ways to build detection tech-
nologies from attacks

H M M

13 Reputation metrics are insufficient to prevent
botnets from operating

H M M

14 Techniques to increase coverage suffer from path
explosion

M M M

15 Inability to predict attacks M M M

16 Malware analysis often lacks correctness, trans-
parency, and realism

M M M

17 Dynamic analysis techniques have limited cov-
erage

M M M

18 Malware analysis often not repeatable M M M

19 Unable to generalize detection of malicious be-
havior

H H H

20 Lack well-accepted attack taxonomies L L L
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21 IP addresses cannot be trusted as identity on
the Internet

H H H

22 Almost all virtual machine introspection (VMI)
methods assume trust in the guest OS

L L L

23 Most UDP-based protocols are hard to analyze
using stateless methods

M L M

24 Analysis of IP address spaces to detect malicious
subnets is static and incorrect

M L M

25 Anti-virus systems provide an oracle to malware
writers seeking to evade detection

H M H

26 Dearth of techniques focused on targeted attacks M H H

27 DNS is not secure; DNS can be used to bypass
most protocols

H M H

28 Difficulty to evaluate security posture of Inter-
net as a whole

H M H

29 White lists and black lists are not sufficient be-
cause they are mostly unmanageable

H M H

30 Attackers can easily hide in ill-defined web stan-
dards

M H H

31 Different anti-virus/anti-malware software are
inconsistent

L L M

32 Machine learning (ML) has an unacceptably
high error rate

L L M

33 ML provides no method to make sense of detec-
tion of possible attacks

L L M

34 Machine learning effectiveness is fundamentally
difficult to evaluate

L L H
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